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This paper proposes mathematical foundations for music theory and composition. While
mathematical methods have proven e↵ective in music theory, a deficiency in rigorous math-
ematical foundations often leads to ad-hoc constructions and a reliance on intuitive notions
with inexplicit definitions. The proposal introduces a comprehensive environment for encod-
ing musical phenomena, as well as a theory of musical parameter.

Drawing from the methodologies of Mazzola (Mazzola, Guerino et al. 2002. The Topos of
Music: Geometric Logic of Concepts, Theory, and Performance. Basel: Birkhäuser Verlag),
the proposed framework aims to extend his theory of forms to accommodate a wider class of
musical structures.

Additionally, I advocate for a framework characterized by “comprehensive comprehension”
(accommodating a broad class of musical objects), “explicit encoding” (capturing essential
features of objects), and “limited ontological commitments” (minimizing posited ontological
primitives). These three aspects aim to ensure the framework’s generality, explicit representa-
tion of structure, and economic e�ciency in theoretical constructions. Minimizing ontological
commitments also has the benefit of facilitating easier comparisons between entities. This ap-
proach is motivated by the desire for a highly versatile framework that enables systematic and
standardized construction methods without constraining the intended domain of discourse.

To achieve these goals, the paper introduces a mathematical theory of structure grounded in
topos theory. By o↵ering a unified and systematic approach, this work contributes to estab-
lishing a more rigorous and standardized basis for mathematical music theory. This, in turn,
fosters a deeper understanding of musical phenomena and enables more robust theoretical
constructions and compositional applications.
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1. Introduction

This paper proposes new mathematical foundations for music theory and composition,
the goal being to provide a systematic and highly general framework for theorizing about
musical phenomena.
The e↵ectiveness of rational constructions in understanding and conceptualizing phe-

nomena relies heavily on the theoretical framework employed. For instance, the classifica-
tion of chords (pitch-class sets) and their relationships would be more challenging without
the tools provided by set theory and group theory. In contrast to this more rigorous ap-
proach of classifying chords based on invariance with respect to group transformations,

⇤
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classifying chords based on subjective criteria—such as e.g. “dissonant,” “consonant,”
“pretty,” etc.—lacks a solid foundation agreeable to a community. Assessing the “pret-
tiness” of a chord, for example, is highly subjective and varies from person to person,
whereas the objective fact that a chord can be transposed or inverted into another is
uncontroversially accepted within a scientific community.
Additionally, performing more advanced constructions based on subjective classifica-

tions would be complex. In contrast, the latter set- and group-theoretic approaches prove
to be more manageable and systematic, as evidenced by the rapid progress in pitch-class
set theory since its formulation in the mid-20th century. Hence, having mathematical
principles for music theory has proved beneficial, in that it provides the means to encode
various entities according to scientific standards.
However, even much of mathematical music theory lacks a solid foundation in math-

ematics. In pitch-class set theory, for example, reliance on intuitive notions of sets is
common, and more advanced constructions are frequently assembled in an ad-hoc man-
ner.
In contrast, a unified foundational system in musical discourse o↵ers the advantage

of conducting constructions according to standard procedures. This, in turn, facilitates
the comparison of theoretical entities, as they will all relate by means of a coherent
underlying ontology. Such a system would allow the theorizing of diverse musical genres,
such as e.g. the works of Milton Babbitt and Gagaku music, without requiring alterations
to the foundational ontology. It is important to emphasize that advocating for a single

ontology does not imply reductionism. Rather, it suggests that as long as the ontology
comports with its intended class of objects, any object belonging to that class can be
integrated without compromising its essential features.
This draws a parallel to a philosopher conceptualizing a system of categories. The

philosopher’s objective is not to narrow reality by reducing it to these categories, which
would result in a more limited worldview; instead, the aim is to articulate a comprehensive
set of conditions that any phenomenon necessarily exhibits. In the same way, our task is
to conceive of the conditions under which music-theoretical entities exist. This research
problem ultimately leads us to propose a broad yet mathematical definition of structure,
asserting that any musical phenomenon can be e↵ectively described in terms of structure.
The following is a roadmap of what we will cover. In Section 2, we will outline the

theoretical challenges we must address. Broadly, our task here is to define our prob-
lem, aiming to provide a framework that (1) comprehensively comprehends the intended
class of musical objects, (2) explicitly encodes their essential features, and (3) limits our
ontological commitments.
In Section 3, we will contextualize our work within the framework of functor cate-

gories in music theory, delineating two distinct motivations for their application. We will
demonstrate that our motivation parallels that of Mazzola in (Mazzola 2002), as our
approach is meta-theoretical, o↵ering a systematic method for concept building. How-
ever, a notable di↵erence between our proposed framework and Mazzola’s lies in our aim
to formulate a broader class of structures than Mazzola’s form framework in (Mazzola
2002).
Section 4 introduces our new theory of mathematical structure. Section 4.1 presents

the initial proposal for defining structure. However, we will see that it is limited in certain
respects, and in Section 4.2, we will address these limitations by transitioning to a more
rigorous framework involving presheaves. This transition leads us to the formal definition
of structure in Section 4.3.
Our theory of structure exhibits similarities to the definition of mathematical structures

in model theory (Hodges 1997, page 2) and likewise to Bourbaki’s concept of structure, as
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detailed in (Corry 1992, Section 4). While a comprehensive discussion of the motivation
behind our presentation, in contrast to the methods of model theory or Bourbaki, exceeds
the scope of this text, I will briefly outline the motivation for our definition as follows:
Our framework o↵ers the flexibility to encompass a broader class of structures than
those achievable through traditional model theory. Moreover, compared to Bourbaki,
our structures can be encoded with greater economy and intuition.
Section 5 presents initial applications to music theory, aiming to showcase the versa-

tility of the framework rather than advancing a specific area of music theory. Below is a
brief overview of the examples addressed in this section:

• Ordered sets and lists.
• Groups and twelve-tone theory.
• Gestures in Mazzola’s gesture theory framework (Mazzola et al. 2018).
• Modules and score objects, as discussed in (Mazzola 2002, Chapter 6).
• Parameter spaces for synthesizers.

These examples serve to illustrate the broad applicability and potential of the framework
in diverse musical contexts. We conclude this section with a brief discussion highlighting
the advantages of employing the structure theory framework over ad-hoc models.
In Section 6, we will discuss the challenges of translating Mazzola’s concepts of denota-

tors, local compositions, and global compositions into our framework. While technically
feasible to inherit the denotator methodology, we will discuss philosophical considerations
that may question its appropriateness. Therefore, we propose an open problem: formu-
lating an analog to denotators within our framework (Section 6.1). Additionally, we will
briefly examine the concepts of local and global compositions in Mazzola’s framework in
Section 6.2. We suggest that once the denotator formalism is established in our theory,
the subsequent challenge is to formulate and classify local and global objects within our
framework.
Finally, we will present our conclusions in Section 7.
Before delving into the core content of this paper, I o↵er a word of caution to the reader.

The mathematical formalisms presented herein are admittedly abstract, which may pose
a challenge for some readers to grasp the true essence and potential benefits of the
proposed framework. To provide a more practical perspective, I have included Appendix
B, where I contextualize the framework in informal, relatable terms. Additionally, I share
insights into how my own musical thinking has been enriched by this framework, drawing
from a composition that heavily relies on its methodologies. I highly encourage readers
who resonate with the spirit of this proposal to explore Appendix B for concrete insights
that complement the abstract formalisms presented in the main text.

2. Foundational principles

In formulating a foundation for a research domain, I propose that the framework should
possess the following features:

(1) Comprehensive comprehension: The framework must be capable of comprehend-
ing every entity considered a member of its domain of discourse.1

(2) Explicit encoding: The framework should encode the essential features of the ob-

1
This can be particularly challenging in dynamic domains like music theory, where the class of musical objects

is in constant flux due to the continuous creation of new music. Nonetheless, we can treat this principle as a matter

of degree, implying that a more comprehensive framework is preferable to a less comprehensive one.
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jects within the domain.
(3) Minimal ontological commitments: The framework should limit its ontological

commitments as much as possible.

The rationale for these requirements is expounded as follows:
Regarding (1): The objective is to avoid constraining the variety of objects that the

framework can account for. For instance, set theory serves as a robust foundation for
mathematics, since any mathematical object or proposition can be described in terms of
sets.
Regarding (2): When studying a phenomenon p within a framework F , the “essential

features” of p should be inherently encoded by F . This encoding should be intrinsic to
p rather than arbitrarily declared “by fiat.” An instance illustrating the latter scenario
is found in Forte’s naive set-theoretical framework in (Forte 1973), where the distinction
between ordered and unordered sets lacks an underlying systematic foundation that
inherently encodes their features of being ordered or unordered.
The following (Forte 1973, page 3) demonstrates this situation:

For a number of reasons it is important to distinguish between ordered and unordered pitch-
class sets. If, for example, [0, 2, 3] is regarded as the same as [2, 3, 0] it is assumed that the
di↵erence in order does not render the sets distinct from one another; they are equivalent
sets since both contain the same elements. In such case the sets are referred to as unordered
sets. If, however, the two sets are regarded as distinct, it is evident that they are distinct
on the basis of di↵erence in order, in which case they are called ordered sets.

There are problems with this methodology. The lack of a systematic framework estab-
lishing the ordered versus unordered nature of a set results in instances where one can de-
termine whether a set is ordered or unordered only if Forte declares it “by fiat.” Contrast-
ingly, a foundation in set theory allows one to unambiguously posit a set X = {0, 2, 3}
and an ordered set as a pair (X,<) where < is an ordering relation on X. This avoids
declarations “by fiat” and ensures that the status of X as an unordered set and (X,<)
as an ordered set is encoded by virtue of the foundational system (namely set theory).
The inexplicit encoding of essential aspects of phenomena is not ideal, particularly in

the context of performing complex theoretical constructions. Grounding constructions
on inexplicit definitions leads to di�culties in systematically recovering their meaning,
allowing erroneous thinking to go undetected. Explicit definitions resolve this problem
by ensuring the systematic recoverability of the total meaning of such constructions.
Regarding (3): The motivation for limiting ontological commitments is not merely

economic, but aims to facilitate a clearer understanding of relations between phenomena.
With only one ontological commitment, for instance, every entity can be understood as
embodying the same underlying principle. In contrast, asserting multiple kinds of entities
as ontological primitives creates an insurmountable barrier between the members of these
di↵erent classes.
For instance, consider Forte’s distinction between ordered and unordered sets. The

lack of a foundational system necessitated the positing of two fundamentally distinct
ontological categories: ordered and unordered sets. However, non-naive set theory (such as
ZFC) would have entailed fewer ontological commitments, requiring only a commitment
to the concept of a set. It would have enabled the derivation of ordered and unordered
sets as incarnations of the same kind of entity (namely a set). Consequently, there is no
insurmountable barrier between ordered and unordered sets; instead, there is a rule (an
ordering relation) enabling the transformation of an unordered set into an ordered set.

4
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3. Motivating the use of functor categories in music theory

Given our framework’s reliance on functor categories, we begin this section by situating
our work within the context of functor category applications in music theory as explored
by other theorists. Functor categories have been applied in various instances within mu-
sic theory; notable examples include (Noll 2005), (Popo↵, Andreatta, and Ehresmann
2018), and Mazzola’s seminal text (Mazzola 2002). These works reveal two overarching
motivations for employing functor categories. In the works of Noll and Popo↵ et al., func-
tor categories are utilized to address specific, concrete topics within music theory. Con-
versely, Mazzola’s application of functor categories is driven by broader, meta-theoretical
considerations. For instance, in (Mazzola 2002), Mazzola develops form and denotator
theories aimed at establishing a framework for conceptualizing music-theoretic entities.
His approach aims to provide a foundational basis adaptable to formulating novel music-
theoretic entities as they emerge. Noll distinguishes between the motivations underlying
Mazzola’s application of topos theory and his own investigation by stating that while
Mazzola’s approach is primarily motivated by arguments situated at the meta-level or
within broader epistemological and semiological frameworks, Noll’s investigation is driven
by a direct e↵ort to interpret topos theory within the context of specific music-theoretical
issues involving harmony (Noll 2005, page 4).
Following Noll’s distinction, our methodology in this paper closely aligns with Maz-

zola’s approach, particularly inspired by his theory of forms and denotators as elucidated
in (Mazzola 2002, Chapter 6). Like Mazzola, our approach delves into meta-theoretical
considerations, aiming to establish a systematic method for concept building. While
our work draws inspiration from Mazzola’s form and denotator theories and shares deep
methodological parallels with his framework, it diverges in motivation in some significant
ways, as we shall soon see.
Mazzola’s form and denotator framework can be roughly defined as a conceptual frame-

work for encoding musical “formulae,” which are algebraic in nature.2 Specifically, his the-
ories are rooted in mathematical modules—in particular, module presheaves—facilitating
recursive construction methods crucial for systematic concept building in music theory.
As evidenced by its extensive applications, this framework o↵ers a robust methodology
for discussing formulae in music.
In contrast to the module-theoretic approach, Mazzola’s more recent topological frame-

work3 shifts focus towards musical “gestures.” The ontological distinction between these
two theories lies in their treatment of algebraic versus topological entities, respectively.
For Mazzola, this distinction marked a significant insight, highlighting the di↵erences
between formulaic and gestural realities in music.
Our paper does not seek to dispute the significance of this distinction in Mazzola’s

work. Rather, we aim to construct a framework that integrates algebraic and topological
entities, among others, within a unified theoretical context. Our fundamental objective

is to establish a universal framework for encoding structure, where there is no inherent

ontological divide between formulae, gestures, or any other musical entities, irrespective

of the kinds of structure they exhibit. The motivation behind this endeavor lies in the
recognition that, particularly in composition but also in theory, various phenomena of
di↵erent ontological statuses often converge into a composite phenomenon. Therefore,
to facilitate the synthesis of diverse objects according to a unified concept-building ap-
proach, a singular theory becomes imperative.4

2
See the distinction between formulae and gestures in (Mazzola and Andreatta 2007).

3
See texts such as (Mazzola and Andreatta 2007; Mazzola 2009; Mazzola et al. 2018).

4
It prompts a philosophical inquiry to ponder whether the consolidation of objects that typically reside within
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Thus, our goal is to provide a comprehensive framework for encoding structure in music.
We articulate this motivation to o↵er readers insight into our overarching objective.
The framework presented in this paper is an original application of the structure theory

framework initially introduced in (Flieder 2022, Chapter 2), extended into the realm of
music theory. In its original conception, this framework serves as a general method for
encoding structure, not confined solely to music theory.

4. Defining structure

The following Sections (4.1–4.3) assume a familiarity with category theory. The reader
is referred to Appendix A for the necessary technical foundations.

4.1. Elementary structures

We present our theory of structure starting with the category Rel, where objects are
sets and morphisms are binary relations between sets. A binary relation R between sets
A and B is defined set theoretically as a subset R ✓ A ⇥ B of their Cartesian product.
However, we use the notation R : A ! B to reflect that relations are morphisms in Rel.
Our initial focus lies in defining elementary structures. This notion provides an intuitive

grasp on structure, although it is inherently limiting, leading us to a more rigorous
definition in Section 4.3. This advanced format ensures generality and facilitates the
synthesis of structures through the categorical constructions of limits, colimits, power
objects, and function objects.
An elementary structure is a set X in Rel, along with a collection R = {Ri : Ai !

X}i2I of relations between various sets Ai and X. This collection generates structure on
X. To exemplify, we show how a group is encoded using this approach.5

Consider a group as a pair G = (G,A), where G is the group’s underlying set and
A = {+,�, e} represents a set of functions,6 expressed by the following diagram.

G⇥G G G

1

e

�+

For those familiar with group axioms, the diagram signifies the following:

• The morphism + : G⇥G ! G is the group’s binary operation.
• The morphism � : G ! G maps each element g 2 G to its inverse �g 2 G.
• The morphism e : 1 ! G maps the singleton set 1 to G, identifying the identity

element.

disparate mathematical categories—such as modules, topological spaces, ordered sets, and so forth—into a single

mathematical category of structures (as proposed in this paper, Section 4) can be regarded as a form of Aufhebung
in the Hegelian sense. Regardless of whether such an argument can be made, the central aim of this proposal

remains consistent: to furnish a comprehensive framework capable of encoding diverse kinds of structures within

a unified framework.

5
The following construction is presented in (Awodey 2010) in the context of the category of sets.

6
Note that Rel contains Set as a full subcategory, and therefore any set function is a morphism in Rel.

6
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One can check that the operations +, �, and e constitute a group on G, by verifying
that they comply with group axioms. The group structure can be verified categorically
through objects and morphisms in the following way:

• Associativity of the binary operation is ensured through the commutativity of the
following diagram.7

(G⇥G)⇥G G⇥ (G⇥G)

G⇥G G⇥G

G

⇠=

+⇥IdG IdG⇥+

+ +

• The morphism e : 1 ! G picks out the identity element, which means that the following
diagram commutes, where e! : G ! G sends every g 2 G to the identity element.

G G

G⇥G G

(e!,IdG)

+(IdG,e!)

+

IdG

• The morphism � : G ! G is an inverse with respect to +, expressed by the commu-
tativity of the following diagram.

G⇥G G G⇥G

G⇥G G G⇥G

e!

(IdG,IdG)

�⇥IdG

(IdG,IdG)

IdG⇥�

+ +

Satisfying these conditions confirms that the set A = {+,�, e} indeed generates a
group structure on G, allowing us to encode the group structure as the pair G = (G,A).
This example serves as an adequate introduction to our concept of an elementary struc-

ture. In (Flieder 2022), it is demonstrated how this methodology enables the encoding
of topological spaces, ordered sets, modules, and various other mathematical structures.

7
The symbol ⇠= expresses the canonical isomorphism defined by ((a, b), c) 7! (a, (b, c)).

7
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4.2. From elementary structures to presheaves

In our structure theory, we will use the category of presheaves over Rel.8 Inheriting
Mazzola’s notation in (Mazzola 2002) for presheaves, we will denote the representable
presheaf of a set X by @X, the hom set HomRel(A,X) as A@X, and the presheaf
category [Relop,Set] as Rel@.
Now consider our definition of an elementary structure S = (X,R), where we choose

a set X and a collection of relations R = {Ri : Ai ! X}i2I . This collection R induces a
presheaf PR : Rel ! Set.
To understand this, we first introduce the concept of a sieve.

Definition 4.1 (Sieve) Let C be a category and X an object in C. A sieve C on X is
a collection of morphisms with X as their codomain, closed under precomposition with
morphisms in C. Formally, C consists of morphisms such that whenever (f : A ! X) 2 C

and (g : B ! A) is a morphism in C, then (f � g : B ! X) 2 C.

In (Mac Lane and Moerdijk 2012, page 38), it is shown that the collection of sieves
on X corresponds one-to-one with the collection of subfunctors of the representable
presheaf HomC(�, X). Thus, for every sieve C on X, there exists a unique subfunctor
bC ✓ HomC(�, X). In the context of an elementary structure S = (X,R), the collection R

induces a sieve on X, thereby generating the corresponding subfunctor of @X in Rel@.
Since we often start by defining an elementary structure S = (X,R) and derive its

presheaf in Rel@, we define the following map.9

PSh :
[

X2Rel0

P
 

[

A2Rel0

A@X

!
! Rel@0 (1)

This map sends every elementary structure to its induced presheaf. The domain is con-
structed in the following way. For each set X, we union all hom sets with codomain
X and form the powerset. This provides the collection of all subsets of relations into
X, which is crucial for defining an elementary structure on X. This procedure is then
repeated for every set X in Rel, and all such collections are unioned together, giving us
the collection of all elementary structures. Then each elementary structure is mapped to
its corresponding presheaf in Rel@.
The reason for transitioning to the presheaf framework lies in the insu�ciency of

elementary structures when synthesizing structures to create new ones—a frequent need
in both mathematics and music. To illustrate, the creation of the product of sets A and
B involves the following straightforward operation.

A⇥B := {(a, b) | a 2 A ^ b 2 B}

In the realm of music, a structure might define a pitch space while another defines a
duration space; their product structure would therefore contain both pitch and duration
information. These crucial operations are absent in the framework of elementary struc-
tures, which hinders the potential for diverse constructions. For instance, inRel, products
and coproducts coincide due to self-duality, and they correspond to disjoint unions of
sets. Hence, the product of sets A and B in Rel fails to yield their set-theoretic Cartesian
product, thereby imposing constraints. For instance, as illustrated earlier in this para-

8
See Appendix A for discussion about presheaves.

9
The subscript “0” in Rel0 and Rel@0 denotes their respective object classes.
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graph, one may wish to form the Cartesian product of pitch and duration structures,
generating pairs (p, d) where p represents pitch and d duration. The presheaf framework
resolves this issue, as products in Rel@ align more closely with the desired set-theoretic
Cartesian product. Specifically, the presheaf framework o↵ers essential operations such as
product, coproduct,10 power, and function structures, facilitated by the topos properties
inherent in the presheaf category.
An outline of these operations is as follows:

• Product structures. Given two structures, S = (A,R) and T = (B,Q), we want their
product S⇥T to comprise the Cartesian product A⇥B of their underlying sets, where
the A coordinate inherits the structure given by R, while the B coordinate inherits the
structure given by Q. For example, if R generates a total order on A and Q generates
a group on B, a pair (a, b) 2 A⇥B gives an order position a and a group element b.

• Coproduct structures. Using structures S and T , we want their coproduct S + T to
consist of the disjoint union of A and B, and have the A elements of A+B inherit the
structure generated by R, and the B elements inherit the structure generated by Q.
For instance, if S is a total order and T is a group, an element k 2 A+ B represents
either an order position or a group element.

• Power structures. We want a power structure ⌦(S) of a structure S to consist of all
substructures of S. Intuitively, one might consider ⌦(S) akin to the powerset P(A)
of the underlying set of S, where each subset X ✓ A embodies the structure of S
restricted to the X portion of A. Although we can certainly encode such restrictions
in the formal setup, the latter is, in fact, even more general.

• Function structures. We want the function structure T
S for structures S and T to

consist of the set of functions f : A ! B on their underlying sets. However, the
concept involves mapping the structure of S to the structure of T . For instance, if S
is a total order and T is a group, a mapping f : S ! T expresses a sequence of group
elements from T , where the sequence is indexed by the elements of S. A category that
accommodates such function types is said to contain internal homs.

In Section 5, we will see how the presheaf framework enables all of the aforemen-
tioned operations. Additionally, that section will elucidate why each of these operations
is indispensable for music-theoretic purposes.

4.3. Formal definition of structure

We present the formal definition of a structure, following the format of Mazzola’s defini-
tion of a form in (Mazzola 2002, pages 63–64).

Definition 4.2 (Structure) A structure S is a quadruple S = (N,T,C, I), where:

(1) N serves as the name of S; it consists of a string of symbols from the free monoid
N over an alphabet11 A. This alphabet consists of symbols from formal and infor-
mal languages to allow maximal freedom in naming. We denote the name of S as
Name(S).

(2) T is the type of S, and is one of the following symbols:
(a) Simple,

10
Indeed, the presheaf framework extends beyond mere product and coproduct constructions to encompass

general limits and colimits as well.

11
The choice of the alphabet A is intentionally left ambiguous to avoid restricting naming possibilities. In a fully

formal context, explicit specification of this alphabet as a set would be required for the free monoid construction.

However, for our current purposes we tolerate this fuzziness in the definition.

9
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(b) Limit,
(c) Colimit,
(d) Power,
(e) Sub,
(f) Hom.
We denote the type of S as Type(S).

(3) C is the coordinator of S, and it depends on the type T as follows:
(a) If T is Simple, then C is a set X.
(b) If T is Limit or Colimit, then C is a diagram12 D of structures.
(c) If T is Power or Sub, then C is a structure.
(d) If T is Hom, then C is an ordered pair (C1, C2) of structures.
We denote the coordinator of S as Coordinator(S).

(4) I is the identifier of S, and is a monomorphism of functors I : Fu ⇢ A in Rel@.
The codomain A is defined as follows:
(a) If T is Simple, then A = @X.
(b) If T is Limit, then A = limD.
(c) If T is Colimit, then A = colim D.
(d) If T is Power, then A = ⌦Fun(C).13

(e) If T is Sub, then A = Fun(C).
(f) If T is Hom, then A = Fun(C2)Fun(C1).
The identifier associates the functor Fu of S with the functor constructed by the
type and coordinator. The role of the identifier I : Fu ⇢ A typically operates
similarly to set comprehension in set theory, but in this context, we enumerate over
“elements” of structures rather than elements of sets. The domain of the identifier,
Fu, is the structure’s functor—essentially, the component that provides the content
of the structure. We denote the identifier of S as Identifier(S).

Before concluding this section, it is worth noting the connections of our new formal
setup with the types of structures discussed at the end of Section 4.2.

(1) Structures of type Simple correspond to elementary structures.
(2) Structures of type Limit generalize product structures. (A product structure is a

limit structure with a discrete14 diagram as its coordinator.)
(3) Structures of type Colimit generalize coproduct structures. (A coproduct structure

is a colimit structure with a discrete diagram as its coordinator.)
(4) Structures of type Power correspond to power structures.
(5) Structures of type Sub are used to define subobjects of the coordinator structure.
(6) Structures of type Hom correspond to function structures.

For brevity, we conclude the discussion here. A comprehensive elaboration of the above
six kinds of types is available in (Flieder 2022).

5. Initial applications of structures to music theory

In this section, we demonstrate how our structure theory framework facilitates the en-
coding of musical phenomena. Mathematical music theory employs various structures,

12
A diagram D : J ! C is a functor, where J is a small index category. Essentially, a diagram identifies a set of

objects and morphisms within the category C.
13
The notation Fun(C) denotes the functor of C, i.e. an object in Rel@.

14
A diagram D : J ! C is called discrete when J contains no morphisms other than the identities.
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including groups, sets, ordered sets, topological spaces,15 and many more. An advantage
of our structure theory is its ability to encode these objects within the same framework,
namely as structures with functors in Rel@. Additionally, it facilitates the synthesis of
structures using topos-theoretic constructions, such as limits, colimits, power objects,
and internal homs, o↵ering diverse methods for creating new structures from existing
ones. The examples that follow o↵er a glimpse into the diverse applications facilitated
by our structure theory.

Example 5.1 (Arbitrary ordered sets and lists) A totally ordered set is a set whose
elements are arranged in a specific sequence. A list is akin to a totally ordered set, with
the distinction that it permits the presence of duplicate elements. In our framework, a list
can be constructed by defining a structure Elems containing elements that one wishes
to construct a list with. For a list of length k, we first define the following structure.

K �!
�:Fu⇢@{1,...,k}

Simple({1, . . . , k})

The structureK is a total order on the first k natural numbers. Such a structure is derived
from an elementary structure ({1, . . . , k}, {<}), where < is a total ordering relation on
{1, . . . , k}. We then derive its functor Fu via the presheaf map defined in (1).

PSh ({<}) = Fu

A list is then represented by a morphism l : K ! Elems, where the value of l(i) 2 Elems

provides the ith element of the list.16

Now, any morphism f : X ! Y in Rel@ can be turned into an object in Rel@ by
taking the limit of the following diagram.

X
f�! Y

Thus, the list l is encoded as the following structure.

List �!
Id

Limit
⇣
K

l�! Elems

⌘

It consists of pairs17 (i, e) where i is an order position in K, and e is an element in
Elems.

Example 5.2 (Groups and twelve-tone theory) Groups, which are central to music theory,
can be encoded as structures, as we saw in Section 4.1. For example, the set of twelve
pitch classes is treated as the additive group Z12. The T/I group of transpositions and
inversions of Z12 can be defined as a subset of the hom set HomRel@(Z12,Z12). Since
Rel@ has internal homs, we can encode the hom set as the following structure.

T/I �!
�:Fu⇢Fun(Z12)

Fun(Z12)
Hom(Z12,Z12)

15
While topological spaces are less common in the context of music theory compared to other structures, refer

to (Callender, Quinn, and Tymoczko 2008; Polansky 1996; Tymoczko 2010) for applications.

16
Note that the notation L(i) 2 Elems is technically an abuse of set-theoretic notation.

17
Again, this is an abuse of set-theoretic notation, but is a convenient way to express the resulting structure.
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Here, the identifier � : Fu ⇢ Fun(Z12)
Fun(Z12) ensures that only maps constituting

transpositions and inversions are included in T/I.
Using the list construction from the previous example, we can define a twelve-tone row

as a structure of the following form.

ToneRow �!
Id

Limit
⇣
12

t�! Z12

⌘

The structure 12 is the totally ordered set of integers from 1 to 12, and t is epimonic.18

In other words, a twelve-tone row is a twelve-element list of non-repeating elements from
Z12.
A transformation of a tone row can be visualized via a commutative diagram expressing

the fact that one tone row is a transposition or inversion of another.

12 12

Z12 Z12

Id12

t t
0

'

Assuming that ' 2 T/I, the diagram expresses that t transforms into t
0 under a trans-

position or inversion operator.
Furthermore, the collection of all tone rows is encoded as the following structure.

AllRows �!
 :Gu⇢Fun(Z12)

Fun(12)
Hom(12,Z12)

Here, the identifier  : Gu⇢ Fun(Z12)
Fun(12) indicates that we want all and only those

morphisms t : 12 ! Z12 that are epimonic.
All the results in this example generalize to equal-tempered scales of any size.

Example 5.3 (Gestures) In this example, we demonstrate the encoding of gestures from
Mazzola’s gesture theory framework, as detailed in (Mazzola et al. 2018). In Mazzola’s

framework, gestures are defined as a distinct type of morphism � : � ! �!
X within the

category of directed graphs (digraphs). To encode these in our framework will require
us to encode digraphs and topological spaces as structures. The encoding of topological
spaces as structures has been previously achieved and discussed in (Flieder 2022, Chapter
2), which we recommend for further verification.
Prior to presenting the formalism for encoding gestures within our framework, we first

o↵er Mazzola’s definition of the concept in (Mazzola et al. 2018, page 914). To begin, we
introduce the notion of a digraph. A digraph is given by a function � : A ! V ⇥V , where
A is a set of arrows and V is a set of vertices. The function’s first projection, t = pr1 ��,
is referred to as the tail function, while the second projection, h = pr2 � �, is referred
to as the head function. Therefore an arrow a can be symbolized as t(a)

a�! h(a). For
digraphs � : A ! V ⇥ V and �0 : A0 ! V

0 ⇥ V
0, a digraph morphism f : � ! �0 is a pair

18
An epimonic map is the category-theoretic generalization of the set-theoretic notion of a bijection.
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f = (f0, f1) such that the following diagram commutes.

A V ⇥ V

A
0

V
0 ⇥ V

0

�

f1 f0⇥f0

�
0

Special types of digraphs, referred to as spatial digraphs, are fundamental in Mazzola’s
gesture theory. A spatial digraph is associated with a topological space X and denoted

by
�!
X . The arrow set A�!

X
of a spatial digraph

�!
X is defined as the set of continuous

curves c : I ! X in X, where I = [0, 1] denotes the unit interval. The vertex set of
�!
X is V�!

X
= X. For any arrow c 2 A�!

X
, it is required that t(c) = c(0) and h(c) = c(1).

Consequently, Mazzola defines a gesture as follows: For a digraph � and a topological

space X, a �-gesture in X is a digraph morphism � : � ! �!
X . The intuition is that �

actualizes the abstract vertices and arrows in � within the topological space X.
To encode such gestures within our framework, we must first define digraphs and

topological spaces. We start with topological spaces. For a set X in Rel, we define a
topology on X as a structure of type Simple.19

X �!
⌧X :FuX⇢@X

Simple(X )

Similarly, we can encode the unit interval [0, 1] as a topological structure.

I �!
⌧I :FuI⇢@[0,1]

Simple([0, 1])

Consequently, the set of continuous curves in X, constituting the arrow structure of
�!
X ,

can be encoded as a structure of Hom type.

A�!
X

�!
curves:Gu⇢Fun(X)Fun(I)

Hom(I,X)

The identifier curves : Gu⇢ Fun(X)Fun(I) specifies that only morphisms from I to X

that constitute continuous maps are permissible in the functor of A�!
X
.

To encode a spatial digraph, we define a structure morphism � : A�!
X

! X ⇥ X.
This morphism, as mandated by Mazzola’s definition, is such that for all c 2 A�!

X
, the

conditions pr1 � �(c) = t(c) = c(0) and pr2 � �(c) = h(c) = c(1) are satisfied.
To facilitate the definition of a digraph morphism as a morphism between structures,

we encode the spatial digraph defined by � as a structure of Limit type.

�!
X �!

Id

Limit
⇣
A�!

X

��! X ⇥X

⌘

Next, we define a digraph D : AD ! VD ⇥ VD, where AD and VD represent arrow and

19
For detailed instructions regarding how to encode topological spaces using our structure theory, refer to

(Flieder 2022, Chapter 2).
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vertex structures, respectively. This digraph is then encoded as a structure.

� �!
Id

Limit
⇣
AD

D�! VD ⇥ VD

⌘

Finally, we define a �-gesture by specifying a structure morphism � : � ! �!
X . The

morphism � is determined by a pair (�0, �1) of structure morphisms on the vertex and
arrow structures, respectively, ensuring the commutativity of the following diagram.

AD VD ⇥ VD

A�!
X

X ⇥X

D

�1 �0⇥�0

�

The method outlined in this example therefore establishes the process for encoding
gestures within our framework.

Example 5.4 (Scores) In this example, we demonstrate how to encode scores within our
framework, following Mazzola’s methodology (Mazzola 2002, Chapter 6).
We begin by encoding a structure that encompasses note event information, including

onset, pitch, loudness, and duration coordinates. Each of these parameters can be defined
as the same module structure over R. For instance, we define an elementary structure
(R,M) where the relations Mi 2 M collectively generate a module structure on R.20
Subsequently, all four structures can be encoded using the same functor PSh(M), di↵ering
only in name.

Onset �!
�:PSh(M)⇢@R

Simple(R)

Pitch �!
�:PSh(M)⇢@R

Simple(R)

Loudness �!
�:PSh(M)⇢@R

Simple(R)

Duration �!
�:PSh(M)⇢@R

Simple(R)

The space consisting of note events is then the product of these four structures.

Note �!
Id

Limit(Onset, P itch, Loudness,Duration)

A single point in this space signifies a note event.
However, a score also incorporates rest information. Thus, an event in a score may

consist of either a note or a rest. We can define the space of rests as comprising an onset
coordinate and a duration coordinate.

Rest �!
Id

Limit(Onset,Duration)

Consequently, the total musical event space encompasses all note and rest event pos-

20
See (Flieder 2022, Chapter 2) regarding how to encode modules as elementary structures.
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sibilities, forming a coproduct structure.

MusEvent �!
Id

Colimit(Note,Rest)

Considering a score as a collection of such events, the space of possible scores constitutes
a structure of type Power.

Score �!
 :2Fun(MusEvent)⇢⌦Fun(MusEvent)

Power(MusEvent)

Thus, a single point in Score encodes a musical score.

Example 5.5 (Parameter space of a synthesizer) The parameters of a synthesizer can be
encoded as structures. Begin by encoding each parameter individually as a structure. For
example, a frequency parameter can be conceived as a vector space over real numbers.

Freq �!
V :Fu⇢@R

Simple(R)

The entire parameter space is then the product of all parameter structures.

SynthParams �!
Id

Limit(P1, . . . , Pn)

An element in SynthParams denotes a specific configuration of parameter values for the
synthesizer.
We can also model the process of improvisation on this synthesizer. Such an improvi-

sation consists in varying its parameters over time. This can be modeled by introducing
a temporal structure T ime with elements representing points in time. The improvisation
itself is modeled as a mapping I : T ime ! SynthParams and is encoded as a structure.

Improv �!
Id

Limit
⇣
T ime

I�! SynthParams

⌘

The value of a pair (t, s) 2 Improv provides the state s of the synthesizer at time t.
The collection of all possible improvisations can likewise be encoded as a structure, as

so.

PossibleImprovs �!
�:Gu⇢Fun(SynthParams)Fun(Time)

Hom(T ime, SynthParams)

Continuing this elaborate construction, one may then wish to define a metric structure
on PossibleImprovs, in order to compare improvisations in terms of their degree of
similarity. A metric on a space X is defined as a mapping of the form d : X ⇥X ! R,
satisfying the following requirements for every u, v 2 X:

• The distance d(u, u) = 0.
• If u 6= v, then d(u, v) > 0.
• If d(u, v) = r, then d(v, u) = r.

Hence a metric on PossibleImprovs requires specifying first the codomain structure.

Distances �!
 :Hu!@R

Simple(R)
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Then, one defines the distance function as a structure morphism satisfying the require-
ments of a metric.

d : PossibleImprovs⇥ PossibleImprovs ! Distances

These examples o↵er initial insights into how diverse music-theoretic entities can be
encoded using the structure theory framework. They suggest the benefits of adopting
a unified, systematic approach to addressing various music-theoretic topics, as opposed
to relying on ad-hoc models. Importantly, the structure theory’s capacity to incorporate
new music-theoretical entities as they emerge enables the consolidation of new phenom-
ena into a cohesive theoretical framework. This stands in contrast to situations where
ad-hoc models are used for emerging objects of interest. In such cases, diverse music-
theoretical entities exist across di↵erent categories with rigid boundaries between them,
inhibiting systematic methods of comparison. A systematic framework for unifying di-
verse entities within the same context not only facilitates systematic construction but also
enables systematic comparison. This significantly enhances the potential for theoretical
advancement.

6. Open problems: Translation of denotators, local compositions, and
global compositions into the structure theory framework

This section will be of particular interest to readers familiar with Mazzola’s denotator
theory as presented in (Mazzola 2002), along with his theories of local and global com-
positions developed therein. In the next subsection, we propose, as an open problem,
the formulation of an analog of denotators in our theory. While we can, in principle, in-
herit the denotator methodology in our framework, there are philosophical reasons that
suggest this may not be the appropriate methodology in our framework.
Furthermore, since local compositions are constructed based on the denotators of Maz-

zola’s theory, and global compositions are, in turn, built on local compositions, we need
to establish an analog to denotators in our structural framework. Once this formulation
is achieved, we can systematically formulate local and global compositions in our frame-
work. The eventual goal is to develop a method for calculating the isomorphism classes
of both local and global compositions in our framework, which is one of the milestones
Mazzola achieved in the module-theoretic framework of his earlier work.
Completing these tasks is, however, beyond the scope of this work. We present the

topics here as open problems, in hope that future research can solve them.

6.1. Denotators

Mazzola’s theory of forms and denotators is discussed in (Mazzola 2002). In a more
recent work (Zheng and Mazzola 2023), the formalisms of forms and denotators have
been extended to arbitrary presheaf categories. However, for the sake of clarity and
simplicity, we confine our discussion to the presheaf category Mod@ outlined in the
former work.
The motivation for addressing this topic here stems from the challenge of formulating

an analog of the denotator format within our structure theory. This challenge remains
as an open problem, primarily due to significant philosophical considerations. In this
section, we will delve into these philosophical issues.
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While a detailed examination of denotators in Mazzola’s work is beyond the scope
of this paper, we will provide a brief overview, directing interested readers to (Mazzola
2002) for a comprehensive treatment. Let’s begin with the definition outlined in (Mazzola
2002, page 67).

Definition 6.1 (Denotator) LetM be a module (also called an address). AnM -addressed

denotator is a triple D = (ND,FD,CD) where:

(1) ND is a string of ASCII characters; it is called the name of D, and denoted by
N(D).

(2) FD is a form; it is called the form of D, and denoted by F (D).
(3) CD is an element of M@Fun (F (D)); it is called the coordinates of D, and denoted

by C(D).

For a denotator D = (ND,FD,CD), we represent it using the following notation.

ND : M  FD(CD)

Let us illustrate the use of denotators with an example. Define M = 0 as the zero module
over the coe�cient ring Z, and define the following pitch-class form.21

PiMod12 �!
Id

Simple(Z12)

We can represent the pitch class 5 2 Z12, for instance, as a 0-addressed denotator.

pc-5 : 0 PiMod12(t
5)

The denotator represents 5 2 Z12 through the a�ne map t
5 : 0 ! Z12 that sends the

single element in 0 to 5.
There are no restrictions to defining denotators solely for 0-addressed points of the

form’s functor. For example, Mazzola illustrates how a dodecaphonic series (Mazzola
2002, page 149) can be encoded as a denotator of the following form, where the coordi-
nates Seri = Ser(ei) are pairwise distinct.

Ser : Z11  PiMod12(Ser0, Ser1, . . . , Ser11)

The underlying intuition behind this formalism is that the zero vector in Z11 maps to the
first pitch class of the series, while the unit vector for the ith coordinate in Z11 maps to
the (i+1)th pitch class of the series. In essence, such a denotator articulates an ordering
on the pitch classes of Z12.
An essential aspect of denotator theory lies in the significance attributed to such de-

notators precisely because the objects within the source category Mod possess inherent

structure. For example, the denotator Ser establishes a serial ordering on Z12 by utiliz-
ing the structured nature of Z11. This structure functions as the module indexing the
elements of Z12, thereby representing a series. Consequently, any A-addressed point of
a module presheaf M in Mod@ represents a structured perspective constitutive of M,
where the perspective’s structure is contingent upon the structure of A. Using the afore-
mentioned example, a series morphism s 2 Z11@Z12 delineates a series over elements

21
Note that we are currently discussing Mazzola’s forms rather than our structures. Therefore, the form PiMod12

has an object in Mod@
, not Rel@, for its functor.
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from Z12 precisely because Z11 possesses a structure that determines the significance
of the morphism as an “ordering perspective” of Z12. In essence, we can interpret any
morphism f : M ! N in Mod as, intuitively speaking, a structured perspective of N ,
where the perspective’s structure is determined by the structure of M .
In our structure theory, the situation di↵ers from Mazzola’s module-theoretic frame-

work. Objects within our source category Rel lack inherent structure; they are simply
sets. Transitioning from Rel to Rel@ holds philosophical significance, characterized by
the notion of generating structure on the sets in Rel. Here, every sieve C over any X

in Rel initiates a process that generates structure on X. Consequently, the resulting
induced presheaf PSh(C) in Rel@ emerges as a structured object, resulting from the
relations in C that generate structure on X.
In Mazzola’s framework, the motivation for transitioning from Mod to Mod@ lies in

the latter’s status as a topos, facilitating universal constructions such as limits, colimits,
and power objects—features absent in Mod alone. Unlike our framework, where struc-
ture is built from scratch, Mazzola’s framework sees modules M transitioning to their
representable functor @M under the premise of their equivalence. This transition is not
driven by the necessity to construct structure on objects in Mod, as they inherently
possess the requisite module structure for Mazzola’s theoretical framework. Instead, the
presheaf construction primarily aims to provide a category conducive to significant uni-
versal constructions lacking in Mod itself.
Conversely, in our structure theory, our perspective is that the transfer of objects in

Rel to their presheaves (representable or otherwise) in Rel@ is a process through which
the “bare” objects in Rel acquire structure. Thus, we cannot simply consider objects X
in Rel as replaceable by their representable presheaves @X in Rel@.
Hence, we can distinguish between morphisms in Mod and morphisms in Rel as

follows: In Mod, a morphism f : M ! N represents a structured perspective of N , while
in Rel, a morphism R : X ! Y denotes a structuring act on Y .
For example, a morphism f : Z11 ! Z12 in Mod does not generate a total order

structure on Z12. Instead, it presents Z12 in an “ordered way,” by associating the basis
vectors of Z11 with elements in Z12.
In contrast, a total ordering relation < : X ! X in Rel does generate a total order

structure on X. It is not merely a “viewing” of X in an “ordered way,” since X lacks
inherent order. Rather, the relation < : X ! X is the very process through which X

acquires its order structure; in other words, X becomes structured, rather than being
“viewed in a structured way.”
Once in Rel@ itself, however, the morphisms in Rel@ resemble “structured perspec-

tives.” This is exemplified in Example 5.2, where we considered the case of a dodecaphonic
series. Unlike in Mazzola’s framework, where a series is an element of the representable
functor @Z12 at address Z11, in our framework, a series is encoded as a morphism inRel@

itself. Specifically, it is a natural transformation of functors s : Fun(12) ! Fun(Z12).
Therefore, if the idea of a denotator is, informally, to encode “structured perspectives” of
recursively generated forms, then such structured perspectives in our framework would
be the morphisms in Rel@. This is because the analog of “recursively generated forms”
in our framework are the recursively generated structures in Rel@, and the structured
perspectives in our framework are the morphisms in Rel@.
This situation leads me to believe, for the time being, that the analog of a denotator

in our framework should be defined as a named morphism in Rel@. To reiterate, the
distinction between this methodology and Mazzola’s denotator methodology is that, in
Mazzola’s framework, a denotator is a point of a functor F in Mod@ at an address A.
In contrast, the equivalent of a denotator in our framework corresponds to a natural
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transformation of functors in Rel@.
However, if we aim to preserve the same format as Mazzola’s theory precisely, we could

do so by iterating the presheaf construction over Rel@, resulting in the (second-order)
presheaf category

⇣
Rel@

⌘@
:=
h⇣

Rel@
⌘op

,Set
i
.

Yet, this seems unnecessary, since the primary motivation for moving to presheaf cate-
gories in Mazzola’s form and denotator framework is to derive the topos structure ini-
tially lacking in the source category Mod. As Rel@ already possesses the desired topos
structure, there is no need to transition to a second-order presheaf category.
Nevertheless, rather than hastily committing to a formalism, I consider it an open

problem to determine the appropriate analog of a denotator in our framework, one that
hopefully o↵ers similar capabilities as Mazzola’s denotator framework.

6.2. Local and global compositions

This section briefly discusses the challenge of integrating a theoretical framework for
addressing local and global musical objects—akin to Mazzola’s framework of local and
global compositions—into our structure theory framework. Since Mazzola’s theories of
local and global compositions rely on his denotator framework, and we have not yet
established a comparable denotator formalism in our framework, we currently lack the
capacity to formulate such objects. Nonetheless, our aim is to eventually tackle the topic
of local and global compositions and endeavor towards their formulation and classification
within our framework.
In Mazzola’s framework, local compositions are essentially subparts of forms.22 For

instance, a pitch-class set P can be conceived as a subset of Z12, corresponding to a subset
P ⇢ 0@Z12 of zero-addressed points of Z12. Formally, local compositions in Mazzola’s
theory correspond to subfunctors of functors in Mod@. Specifically, a local composition

is a denotator D : A F (x), where F is of type Power. For the coordinator form S of
F , such a denotator corresponds (modulo its name) to a subfunctor x ,! @A⇥Fun(S).
Classifying such local compositions involves situating them in a category and identify-

ing methods for calculating their isomorphism classes, a task Mazzola has accomplished.
Global compositions, on the other hand, emerge from local compositions as the amal-

gamation or “gluing” of these local parts.23 The idea is that these gluings form composite
objects that exhibit varying degrees of complexity. While a formal discussion of global
compositions in Mazzola’s framework lies beyond the scope of this text, it should be
noted that Mazzola has achieved a complete classification of global compositions within
his framework.
Working towards a formulation and classification of such local and global objects in

the context of our structure theory is an important task. However, settling on a formal-
ism corresponding to Mazzola’s denotators is crucial, as local compositions build upon
denotators, and global compositions build upon local compositions. Once this formalism
is established, we can then proceed to tackle the formulation and classification of local
and global objects within our framework.

22
See (Mazzola 2002, Chapter 7) for a formal treatment of local compositions.

23
See (Mazzola 2002, Chapter 13) for a formal treatment of global compositions.
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7. Conclusion

This paper introduces a theory of structure with the goal of establishing mathematical
foundations for musical thinking. The core premise is that a rigorous definition of struc-
ture can serve as a foundational framework for musical thinking, particularly when we
conceptualize musical phenomena as structures in the context of sound and time. This
framework equips musicians, especially music theorists and composers, with a powerful
set of tools. These tools not only facilitate the explicit formulation of thoughts but also
enable the exploration of connections between theoretical constructions within the same
mathematical context, namely the category Rel@.
A current challenge lies in grappling with the abstract notions of topos theory. While

those familiar with Mazzola’s work will find parallels in my framework, the specialized
nature of this area poses a hurdle to widespread adoption within the musical research
community. Despite this, the potential for significant musical developments remains sub-
stantial.
Reflecting on my own experience with the developed framework, it has proven im-

mensely beneficial in both theoretical and compositional endeavors. The methodological
approach o↵ered by my structure theory enables the explicit articulation of various mu-
sical phenomena. Not only does it serve as a robust encoding tool, but it also suggests
new ideas.
After acquiring the skill of working in Rel@, formulating musical ideas within this

framework becomes simpler than less rigorous approaches. This aligns with the senti-
ments expressed in Section 2, where we discussed how firm foundations facilitate the
systematic recovery of the meaning of certain constructions, alleviating the burden of
mentally keeping track of every phase of construction. Explicit mathematical frameworks
grounded in standard procedures are essential for achieving this goal.
In essence, my use of structure theory has significantly enhanced my ability to conceive

new musical situations. This theory facilitates navigation through complex constructions
within a precisely defined framework. By encoding the essential features of its intended
objects, the formal framework alleviates the mental burden associated with tracking these
features. Moreover, the reliable encoding of structural information not only alleviates
cognitive overload, leading to a deeper theoretical understanding and advancements in
both theory and composition, but also provides a formal basis for systematic comparisons
between entities. This capability fosters the potential for significant theoretical progress.
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Appendix A. Mathematical preliminaries

This appendix introduces concepts from category theory that are necessary for compre-
hending my structure theory. More thorough treatments can be found in texts such as
(Awodey 2010) and (Mac Lane 2013). Definitions of category, functor, and natural trans-

formation will be provided. Finally, we will delve into the Yoneda lemma, a crucial step
in establishing the formal definition of structure in Section 4.3.
Informally, a category is a mathematical object comprised by two classes: (1) a col-

lection C0, referred to as objects, and (2) a collection C1, referred to as morphisms,
representing the mappings between objects in C0. In essence, a category resembles a di-
rected graph, with objects as nodes and morphisms as arrows between these nodes. The
formal definition of a category is as follows.

Definition A.1 (Category) A category C consists of the following data:

• A class C0 of objects.
• A class C1 of morphisms.
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• A binary operation � : C1⇥C1 ! C1 on the morphism class, referred to as composition.
For objects X, Y , Z and morphisms f : X ! Y , g : Y ! Z, their composition is
a unique morphism g � f : X ! Z (often pronounced “g after f ,” since one first
performs f , and then g). Furthermore, this binary operation must satisfy the following
conditions:
� Identity. For every object X, there exists a morphism IdX : X ! X. Such mor-

phisms are specified by the fact that for any morphism f : A ! B, the following
holds.

f � IdA = IdB � f

Such a morphism IdX is termed the identity morphism of X.
� Associativity. For morphisms f : A ! B, g : B ! C, h : C ! D, we have the

following equality.

h � (g � f) = (h � g) � f

Functors serve as morphisms between categories. Given that categories consist of col-
lections of objects C0 and collections of morphisms C1, a morphism of categories (functor)
F : C ! D can be expressed as a pair of mappings F0 : C0 ! D0 and F1 : C1 ! D1

on the object and morphism classes, respectively. Moreover, a functor must preserve the
structure of a category. Consequently, the formal definition of a functor is as follows.

Definition A.2 (Functor) Let C and D be categories. A functor F : C ! D constitutes
a pair of mappings F0 : C0 ! D0 and F1 : C1 ! D1 satisfying the following conditions:

• For every identity morphism IdX in C, F (IdX) = IdF (X).
• For morphisms f : A ! B, g : B ! C in C1, it holds that F (g � f) = F (g) � F (f).

A functor is called covariant if it preserves the direction of arrows and contravariant

if it reverses them.
As functors are morphisms between categories, morphisms between functors are called

natural transformations. As the structures we defined are specialized kinds of functors
(presheaves), the morphisms of these structures arise as natural transformations of func-
tors.

Definition A.3 (Natural transformation) Let C and D be categories, with F : C ! D
and G : C ! D functors. A natural transformation ⌘ : F ! G constitutes a class of
morphisms satisfying the following conditions:

• For every object X in C, there exists a morphism ⌘X : F (X) ! G(X), called the
component of ⌘ at X.

• The components must adhere to the rule that for every morphism f : X ! Y in C,
the following equality holds.

⌘Y � F (f) = G(f) � ⌘X
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To express this categorically, we say that the following diagram commutes.

F (X) G(X)

F (Y ) G(Y )

⌘X

⌘Y

F (f) G(f)

Lastly, we discuss the Yoneda lemma.24 To formally present this idea, let us begin with
its underlying intuition. In a category, we can conceptualize the objects as “entities” and
the morphisms as “perspectives.” For instance, a morphism f : A ! B can be seen as
a perspective providing insight into object B from the vantage point of object A. When
focusing on an object X, a set of morphisms {fi : Ai ! X}i2I represents a collection of
perspectives on X, each providing a distinct viewpoint.
Yoneda’s insight lies in the revelation that an object X in a category C equates to all

perspectives of X stemming from every other object in C. This equivalence enables us
to substitute objects X in C with entities derived from their perspectives. This process
gives rise to a new category denoted by [Cop

,Set]. Consequently, instead of studying
C we can study [Cop

,Set], without any loss of information. While seemingly abstract,
this substitution has proven its utility. Notably, by replacing objects with collections of
perspectives, the new category inherits the property of being a topos, enabling significant
constructions not always possible in the original category.
To begin the presentation of the Yoneda lemma, we first introduce some definitions.

The first definition is that of a hom functor, which formally defines the replacement of
X with its collection of perspectives. Once we establish hom functors, the concept of a
presheaf emerges, which generalizes the concept of a hom functor.
Before we proceed with definitions, a brief technical note. A category C is considered

locally small when, for any two objects X and Y in C, the collection HomC(X,Y ) of
morphisms fromX to Y forms a set.25 (This detail primarily concerns the mathematically
inclined reader and can be skipped without sacrificing an understanding of the essential
concepts presented in this work.)
Now we proceed to define a concept that is pivotal for comprehending the Yoneda

lemma.

Definition A.4 (Contravariant hom functor) Let C be a locally small category. A con-

travariant hom functor is a functor, notated in the following way.

HomC(�, X) : C ! Set

It is defined as follows:

• Each object A in C maps to the hom set HomC(A,X).
• Each morphism f : A ! B in C maps to the following set function.

HomC(f,X) : HomC(B,X) ! HomC(A,X)
g 7! g � f

24
See (Mac Lane 2013, pages 59–62) for a thorough treatment.

25
This is a technical issue regarding size issues in set theory. A collection that is too big may not be a set, but

a proper class.
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A presheaf is a generalization of a contravariant hom functor, as it is defined simply
as a contravariant functor into Set. In fact, contravariant hom functors are also termed
representable presheaves. This “representability” concept essentially signifies the ability
to “represent” an object X via the network of all perspectives of X. If, however, the
functor contains only a subset of the perspectives, it is not representable, indicating it
carries only partial information of X.
The category [Cop

,Set] encompasses all presheaves over C for objects and natural
transformations between presheaves for morphisms. Converting each object A in C to its
representable presheaf HomC(�, A) extends to a functor Y : C ! [Cop

,Set]. The Yoneda
lemma implies that this functor is full and faithful,26 embedding C within its category
of presheaves. Consequently, replacing C with its category of presheaves preserves all
information and often bestows the new category with advantageous features absent in C
alone—such as limits, colimits, a subobject classifier, and internal homs.

Appendix B. Concrete applications and informal discussions of the Rel@

topos

This appendix provides concrete context and constructions for working within the Rel@

topos. It is intended for readers who appreciate the framework’s goal of o↵ering a uni-
versal structure-encoding system but are not yet comfortable with the topos-theoretic
technical formalities required for full theoretical rigor. This appendix will demonstrate
how the framework naturally aligns with musical thought.
The approach here will be as informal as possible, focusing on how I have personally

employed the framework in my musical thinking.
In Section B.1, I will briefly discuss the connection between the categories Rel@ and

Set, highlighting their similarities. Since readers are assumed to be familiar with basic
set theory, this comparison should o↵er an intuitive entry point into the new framework.
In Section B.2, we will apply the framework to a concrete musical construction. Then,

in Section B.2.1, I will explain how I used the framework in composing Reverie for solo
cello. This concrete example aims to demonstrate how the framework has supported my
musical endeavors, making it more relatable.
Finally, in Section B.3, I share my concluding thoughts, aiming to provide useful con-

text for those interested in working within the proposed framework.

B.1. Thinking in terms of sets

An intuitive entry point into our framework is to consider the category Set of sets. The
category Rel@ is quite similar to Set, with the crucial distinction that the objects in
Rel@ have additional structure. While we will not delve into the complex relationship
between Set and Rel@ here, it is important to note that morphisms between structured
sets in Rel@ generally o↵er as much freedom as set maps in Set.
For example, consider sets X and Y . If we equip these sets with additional structure,

resulting in objects X and Y in Rel@, then any set map f : X ! Y can be translated
into a corresponding map f : X ! Y on the structured sets. Therefore even though the
sets in Rel@ have additional structure, the morphisms between these structured sets are
not required to preserve their structure. For instance, f : X ! Y can be a mapping
between two groups that is not a group homomorphism, or X and Y can possess entirely

26
See (Mac Lane 2013) for definitions of full and faithful functors.
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di↵erent kinds of structure. Thus, operations on sets in Set can be similarly performed
on the structured sets in Rel@. The structure framework o↵ers a method for encoding
additional structure while maintaining the intuitive ease of working with sets.
In the subsequent subsections, I will treat the constructions as sets and declare “by fiat”

when they incorporate additional structure. This approach aims to enhance intuitiveness
and manageability for readers who have not yet mastered the abstract details of the
formal setup. Readers are encouraged to revisit the formal framework presented in the
main text to formalize these informal constructions.

B.2. Applying the structure framework

Before getting started, I would like to outline the early phases of my compositional
process and how theorization is involved.

(1) In the germinal phases of a composition, I imagine certain kinds of musical phenom-
ena.

(2) After conceiving these phenomena, I formulate general structural descriptions that
explicate their properties of interest at a conceptual level.

(3) I begin again at Step 1, informed by the theoretical formulations from Step 2.

This process does not always lead to fully explicated musical archetypes. Often, I settle
on a formulation that is simple and intelligible enough to work with e↵ectively. For myself,
and likely for many others, the compositional process often spawns theoretical ideas.
These ideas are theoretically formulated enough to provide a framework for e�cient work,
while working out the full theoretical implications is postponed. Later, I can approach
these ideas from a purely speculative standpoint, fully explicating the general principles
formulated during composition. This theoretical explication, in turn, enhances my ability
to conceive novel musical phenomena for future projects. Thus, there is a feedback loop
between the spontaneous occurrences in the compositional phase and the theoretical
explications that follow.

B.2.1. Composing Reverie

To illustrate the application of the structure theory framework in compositional thinking,
I will walk the reader through the compositional process of a piece I composed in 2023
titled Reverie for solo cello. A distinctive feature of this piece is the concept of the
“compositional unit.” Each compositional unit represents a complete musical idea, and
the progression of these units shapes the overall form of the piece. These units are defined
by associating one of the following four process types to each of the four parameters of
pitch, amplitude, timbre, and duration.

• Static: There is no change in the parameter value throughout the event.
• Periodic: The parameter value recurs at a regular interval, or there is repetition of a

symmetric pattern.
• Trajectorial: There is a gradual transition from a starting value a to an ending value

b.
• Random: The parameter values follow no discernible pattern.

For instance, a trajectorial pitch process might involve the pitch contour following a
general ascending or descending trajectory over the course of a compositional unit. In the
duration domain, a trajectorial process might manifest as an accelerando or ritardando,
or simply a gradual increase or decrease in rhythmic density. The static process type is the
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(c) trajectorial pitch process
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(d) random pitch process

Figure B1. Examples of the four types of pitch processes

easiest to define, as it generally involves a fixed value over the course of a compositional
unit; for example, if the pitch is static, the event will feature just one pitch. Figure B1
shows an example of each of the four process types manifested in the pitch domain.27

The question now is, how can these musical conceptions be formulated explicitly? My
structure theory framework provides the technical means to explicitly formulate these
concepts. Hence, I will guide the reader through an overview of how I expressed these mu-
sical processes using my structure theory. Section 5 of the main paper provides examples
of the systematic and abstract approach to working with this framework. However, to
keep things more concrete, I will adhere less to strict notational rigor and aim to ground
the construction steps in a more immediately recognizable way for those less acquainted
with the topos-theoretic specifics of the formal setup.
For starters, let us consider how to explicate what is meant by a “process,” as mentioned

above. A process is a time-indexed selection of parameter values from some parameter
space X, in other words, a sequence of values from X. It is natural to define such a
phenomenon by a mapping � : N ! X, where N is the collection of natural numbers
from 1 to N (inclusive). We may call such a map � : N ! X an X-valued process.
It is then natural to ask, what are the structural requirements of the objects N and

X that will enable one to define such a process? Let us start with N . The structure we
require for N is simply a total order structure, since an X-valued process is a sequence
of values from X. Therefore, the value �(i) 2 X of the ith ordinal in N gives the ith
event of the process.
To make this concrete, let us consider an example where X = Z, the collection of

pitches in twelve-tone equal temperament (setting 0 to middle-C, 1 to middle-C], etc.),
and let 4 denote the totally ordered set of integers from 1 to 4. Then an X-valued process
� : 4 ! X is a process of selecting four pitches (see Figure B2).
At this juncture, we have addressed the necessary structural requirements for the

domain structure N of a process � : N ! X. We have established that all we need is
for N to be totally ordered. It is worth briefly noting that to accommodate continuous

processes, we would need N to possess some topological structure as well. For instance,
if we desire a process to represent a continuous glissando curve rather than discrete pitch

27
This approach to composition may remind one of the methods prevalent in the 1950s and 1960s, with prominent

composers such as Stockhausen, Xenakis, Cage, and Babbitt. These figures are part of my musical heritage, and

much of my musical thinking has evolved towards generalizing across their diverse approaches to extract musical

principles that lead to complex and intelligible forms of musical organization. Although many of these radical

composers’ initial attempts were often, in my view, rife with error, their visionary attitudes remain influential.

My desire is to continue this musical attitude, even if practiced only by a modest group of dedicated artists. The

attitude expressed by these radical composers was inherently self-critical, suggesting a potential marriage of art

and science.
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Figure B2. This figure demonstrates how an X-valued process � : 4 ! X corresponds to an ordered selection of

pitches.

selections, we would require N to be something akin to the unit interval [0, 1] equipped
with topological structure. However, for the present, we set aside such generalizations.
The next inquiry we must address is the structural requirements of the codomain

structure X—the parameter space of the process—to determine when a process is static,
periodic, trajectorial, or random. Let us begin by considering the prerequisites for X to
ascertain whether a process � : N ! X is trajectorial. This entails a continual transition
from one point x 2 X to another point y 2 X over the course of the process. It is evident
that X must be endowed with structural information to establish a notion of “closeness,”
allowing us to progressively approach y with each step in the process. When discussing the
phenomenon of “closeness” in mathematics, this typically involves a topological context,
necessitating that X is equipped with an appropriate topological structure.
For instance, when X = Z represents pitch space, we can achieve the required topologi-

cal structure through the metric defined by d(x, y) = y�x, representing the pitch interval
between two pitches. To further specify the structure of X, we may also equip it with
group structure, as commonly employed in musical analysis and composition. However,
such group structure is not strictly necessary for defining a trajectorial process.
The topological structure of the codomain su�ces to define the remaining process

types. In brief, we can delineate each process type as follows:28

(1) Static: A static process � : N ! X is characterized by every i 2 N mapping to the
same value x 2 X. In other words, � constitutes a constant map.

(2) Periodic: In a periodic process � : N ! X, a value x 2 X recurs periodically.
Specifically, for a fixed integer k and positive integer n < N , there exists an x 2 X

such that

�(i) = �(i+ k) = · · · = �(i+ nk) = x.

Here, k denotes the period of the process, and i represents its initial onset. Another

28
The following descriptions are simplifications. In composing the piece, numerous variations of each process

type were used throughout. However, detailing each variation would be time-consuming. Thus, we prioritize brevity

to o↵er the reader a basic understanding.

27



September 3, 2024 Journal of Mathematics and Music ”Towards a mathematical foundation for music the-

ory˙revision3˙constructionRevision˙postprint”

kind of periodic process � : N ! X displays symmetrical behavior, such as when
the values of the second half are the reverse of those in the first half.

(3) Trajectorial: A trajectorial process � : N ! X begins with a start value x 2 X

and concludes with an end value y 2 X, with each subsequent value drawing nearer
to y. This trajectory is determined by a distance function d : X ⇥ X ! X, where
the condition |d(�(1), y)| > |d(�(2), y)| > · · · > |d(�(N � 1), y)| ensures convergence
towards y. While this requirement specifies a strictly converging sequence, it can be
relaxed by stipulating a general trajectory towards y, rather than mandating that
every subsequent value of the process approaches closer to y.

(4) Random: A random process � : N ! X is one that is neither static, periodic, nor
trajectorial.

Our essential components for formulating the four process types are therefore: (1)
ensuring the domain structure of a process � : N ! X is totally ordered, and (2)
equipping the codomain with topological structure. Once these are established, specifying
values for N and X defines a particular process.
Given that a generic process may consist of any number N 2 N of events, our aim is

to devise a general scheme for a process. To accomplish this, we take the collection of
mappings Hom(N,X) for each N 2 N. Then, we take the coproduct (disjoint union) of
all such processes, resulting in the following collection.

X =
a

N2N
Hom(N,X)

As “static,” “periodic,” “trajectorial,” and “random” are properties of processes, and X
represents the collection of all X-valued processes, each of the aforementioned processes
defines a subset of X—specifically, the subset consisting of processes that exhibit said
property. Therefore, we can regard each of the four properties as a subset of X .
Now let us define the parameter spaces of pitch, amplitude, timbre, and rhythm used

in Reverie. As mentioned, any of the process types can occur in the pitch, amplitude,
timbral, and duration domains.

• Pitch: The pitch domain is P = Z, with 0 denoting middle-C, 1 denoting middle C-],
and so on.

• Amplitude and Duration: Both the amplitude and duration domains are A = D =
R, where a real number in the amplitude domain represents decibels, and a real number
in the duration domain represents seconds.

• Timbre: The timbre parameter T is more complex and less straightforward to define
structurally. I conceptualized it as a “degree of noise” parameter, with di↵erent playing
techniques on the cello corresponding to varying degrees of noise. For example, “arco
ordinario” is considered the least noisy, “sul ponticello” has a medium level of noise,
and “pizzicato” is the noisiest.

Hence, the collections of processes over each parameter are given by
`

N2NHom(N,P),`
N2NHom(N,A),

`
N2NHom(N,T), and

`
N2NHom(N,D). Each collection represents

sequences of pitches, amplitudes, timbres, and durations, respectively. To denote static,
periodic, trajectorial, and random processes, I will use the following symbols: ·, ⇠, !, #.
For example, P(·) ⇢

`
N2NHom(N,P) denotes the subcollection of static pitch processes,

P(⇠) ⇢
`

N2NHom(N,P) denotes the subcollection of periodic pitch processes, and so
on.
A compositional unit in my piece Reverie is determined by a quadruple
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(P(�1),A(�2),T(�3),D(�4)), where each �i is either ·, ⇠, !, or #. The compositional
unit occurs at the measure level, so each new measure features a new quadruple. For
instance, the first measure of the piece has the compositional unit (P(·),A(·),T(·),D(·)),
meaning that every parameter value deploys a static process.
The final topic I would like to discuss in this section is how compositional units were

organized into the large-scale formal structure of the piece (see Figure B3 for an excerpt of
the formal scheme used during composition). Often, it is desirable to control the evolution
of each parameter according to its own compositional strategy. For instance, the evolution
of pitch processes might follow a di↵erent scheme than that of amplitude processes.
Before composing the sequence of quadruples, each parameter’s evolution is composed
individually. Once each evolution is determined, they are “merged” into quadruples that
define what happens at specific moments in the piece. This method can be naturally
encoded in our structure framework, as we will now see.
In Reverie, there are 133 compositional units. Thus, we define a totally ordered set

labeled as 133 containing 133 elements and construct the sequence of pitch processes for
each compositional unit. We employ the coproduct construction to obtain the disjoint
union of all pitch processes.

P := P(·)q P(⇠)q P(!)q P(#)

An element of this collection is either a static, periodic, trajectorial, or random pitch
process. We then define a mapping that provides the sequence of pitch processes for each
compositional unit.

�P : 133 ! P

(A perceptive reader might notice that � itself can be conceived as a P-valued process,
enabling the definition of novel kinds of processes over it. Indeed, such strategies were
employed in the composition of the piece.)
We repeat these steps to specify the sequence of amplitude, timbre, and duration

process types for each compositional unit:

�A : 133 ! A,

�T : 133 ! T,

�D : 133 ! D.

To merge these independent parameter evolutions into quadruples that define each
compositional unit, we take the limit of the following diagram.

133

P A T D

�P

�A �T

�D
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(a) first compositional unit: (P(·),A(·),T(·),D(·))
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(b) seventh compositional unit: (P(#),A(·),T(·),D(#))
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(c) forty-first compositional unit: (P(!),A(!),T(!),D(!))
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(e) eighty-first compositional unit: (P(⇠),A(⇠),T(⇠),D(#))

Figure B4. The above excerpts present realizations of five of the 133 compositional units of Reverie.

The limit of this diagram encodes the sequence of compositional units that govern the
form of the piece. Specifically, it consists of quadruples of the following form.

(i,�P(i),�A(i),�T(i),�D(i))

Here, the first coordinate i specifies the ith compositional unit, and the values �P(i),
�A(i),�T(i), and �D(i) provide the ith process type over the domains of pitch, ampli-
tude, timbre, and duration, respectively. Examples of excerpts of music corresponding to
some compositional units of Reverie are provided in Figure B4.
I have illustrated how the structural approach informed my composition of Reverie for
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solo cello. However, the formulations discussed here do not cover all those employed in
the piece—numerous other methods incorporating the structural approach were utilized.
Due to constraints, I cannot delve into all of them here.

B.3. Final thoughts

I should note that my compositional thinking has followed a structural approach for years,
even before I was well-versed enough in mathematics to formulate my ideas explicitly.
The structural approach presented in this paper should not be seen as an attempt to
constrain the spontaneity of musical thought into rigid procedures, but rather as a way
to lend explicit form to the conceptions that arise from the creative activity of music
composition and theoretical contemplation. When a musical object can be formulated
mathematically, it enters a layer of imagination that is more concrete than the immediate
intuitions that inspired the initial conceptions. This increased objectivity allows for more
sophisticated musical treatment.
I wish I could devote pages to discussing the development of musical ideas and how this

evolution is rooted in formal procedures. However, for the sake of brevity, I encourage
readers to explore this relationship through their own imagination. The idea is that
formal sign systems o↵er systematic procedures that facilitate the translation of general
conceptions into abstract objects. The objectivity of these abstract objects, in contrast
to the less objective nature of immediate conceptions, fosters a scientific approach that
promotes the growth of thought in general, and musical thought in particular.
For instance, in years past, I might have considered the concept of a “trajectorial

process,” involving movement from point a to point b. However, I would not have had
the depth of understanding to articulate the structural conditions inherent in this process,
especially not in the clear and concise terms outlined in Section B.2.1. It is doubtful that
I would have explicitly recognized it as a mapping from a total order to another object
with topological structure.
Within this structural framework, once a concept is explicitly formulated, it deter-

mines an abstract object (i.e., an object in Rel@). This object can then be explored and
experimented with in ways that less formalized concepts cannot.
I hope this appendix has been beneficial to the reader. Those inclined to contribute to

this nascent formal framework are warmly encouraged to do so.
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